Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Pharm ; 1(1): 121-131, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646594

RESUMO

Amorphous solid dispersions (ASDs) are a widely studied formulation approach for improving the bioavailability of poorly water-soluble pharmaceuticals. Yet, a complete understanding remains lacking for how specific processing methods may influence ASDs' molecular structure. We prepare ketoprofen/polyvinylpyrrolidone (KTP/PVP) ASDs, ranging from 0-75 wt% KTP, using five different amorphization techniques: melt quenching, rotary evaporation with vacuum drying, spray drying, and acoustic levitation with either a premixed solution or in situ mixing of separate co-sprayed solutions. The co-spray levitation approach enables on-demand compositional changes in a containerless processing environment, while requiring minimal pharmaceutical material (∼1 mg). The structure of all ASDs are then compared using high-energy X-ray total scattering. X-ray pair distribution functions are similar for most ASDs of a given composition (Rx = 0.4-2.5%), which is consistent with them having similar intramolecular structure. More notably, differences in the X-ray structure factors for the various amorphization routes indicate differing extents of molecular mixing, a direct indication of their relative stability against crystallization. Melt quenching, spray drying, and levitation of premixed solutions exhibit some degree of molecular mixing, while the co-sprayed levitation samples have molecular arrangements like those of KTP/PVP physical mixtures. These findings illustrate how X-ray total scattering can be used to benchmark amorphous forms prepared by different techniques.

2.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37259402

RESUMO

Bedaquiline has been approved as a combination therapy to treat multi-drug-resistant tuberculosis in adults ≥ 18 years old. The citrate, fumarate, phosphate, and tartrate salts have obtained patents, but the structures for these moieties have not been extensively described in the literature; only the powder X-ray patterns have been published. To expand the knowledge of the bedaquiline structure, this study provides detailed information for the synthesis, elucidation, characterization, and stability of four additional new potential molecular entities, namely, benzoate, hydrochloride (HCl), nicotinate, and malonate salts. The salts were formed using a 1:1 ratio of the counter ions (acids) to a 30 mg equivalent of the bedaquiline free base. The principles of the International Conference on Harmonization Q6 were used to characterize the new salts and their stability-indicating parameters were evaluated at 0, 3, and 6 months under accelerated conditions of 40 °C and 75% relative humidity. The benzoate salt exhibited the lowest tendency to lose its chemical potency. Aside from the HCl salt, the others retained their chemical structure, displaying long-term stability. All salts were non-hygroscopic and the hydrated benzoate and nicotinate salts were stable to dehydration. Regarding their chemical potencies, thermal analysis, chemical stability, and water sorption potential, the salts were ranked as follows: benzoate > malonate > nicotinate > HCl.

3.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38256876

RESUMO

Levothyroxine tablets, although highly prescribed in the United States, have been one of the most frequently recalled products. Because of the importance of the medication, several efforts have been put in place by the United States Food and Drug Administration (US FDA) to control the quality of levothyroxine tablets available to patients using the drug. The choice of excipients used in the formulation has been shown to impact the hygroscopicity and microenvironment, and ultimately the stability of the levothyroxine tablets formulations. Based on information generated from the US FDA Enforcement Report database, one of the main reasons for recalls is the low potency of different batches of the product. The yearly product recall trends for levothyroxine formulations were determined using the FDA Enforcement Report database. Three brands of levothyroxine tablets were selected with excipient lists similar to those products that have been historically recalled. The samples were placed at ambient (~23 °C), accelerated stability (40 °C/75% RH), and stress (50 °C/75% RH) conditions for up to 6 months. Sample potencies were determined at 0, 1.5, 3, and 6 months using the methods for assay and impurities in the United States Pharmacopeia (USP) monograph for levothyroxine tablets. Additional sample monitoring was conducted by overlaying the initial powder X-ray diffractograms (PXRD) of the samples from 0 months with the patterns generated thereafter. There has been a decline in the number of levothyroxine tablets recalled over the years. The highest numbers of recalls were recorded in the years 2013 [33] and 2020 [23]; no recalls occurred in the years 2019 and 2022. All of the brands evaluated met the USP 95.0-105.0% assay requirements at 1.5 months under accelerated conditions; only one of the brands complied at 3 months. Under ambient conditions, two brands were stable at 6 months, with borderline assay results. For stability, levothyroxine was found in microgram quantities in the formulations and PXRD could not detect changes at these low levels. However, we found some distinguishing data for samples under stress conditions.

4.
Int J Pharm ; 614: 121456, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35017024

RESUMO

The FDA-approved anthelmintic flubendazole has shown potential to be repositioned to treat cancer and dry macular degeneration; however, its poor water solubility limits its use. Amorphous solid dispersions may overcome this challenge, but the balance of excipients may impact the preparation method and drug release. The purpose of this study was to evaluate the influence of adjuvants and drug loading on the development of an amorphous solid dispersion of flubendazole-copovidone by hot-melt extrusion. The drug, copovidone, and adjuvants (magnesium stearate and hydroxypropyl cellulose) mixtures were statistically designed, and the process was performed in a twin-screw extruder. The study showed that flubendazole and copovidone mixtures were highly extrudable, except when drug loading was high (>40%). Furthermore, magnesium stearate positively impacted the extrusion and was more effective than hydroxypropyl cellulose. The extruded materials were evaluated by modulated differential scanning calorimetry and X-ray powder diffraction, obtaining positive amorphization and physical stability results. Pair distribution function analysis indicated the presence of drug-rich domains with medium-range order structure and no evidence of polymer-drug interaction. All extrudates presented faster dissolution (HCl, pH 1.2) than pure flubendazole, and both adjuvants had a notable influence on the dissolution rate. In conclusion, hot-melt extrusion may be a viable option to obtain stable flubendazole:copovidone amorphous dispersions.


Assuntos
Química Farmacêutica , Excipientes , Varredura Diferencial de Calorimetria , Portadores de Fármacos , Composição de Medicamentos , Temperatura Alta , Mebendazol/análogos & derivados , Pirrolidinas , Solubilidade , Compostos de Vinila
5.
AAPS PharmSciTech ; 23(1): 19, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34904204

RESUMO

Pharmaceutical companies use the quality by design (QbD) approach to build high-quality drug products. A thorough understanding of risk factors is required to successfully employ QbD. In order to better understand risk factors that potentially impact drug product quality and inform future QbD approaches, we hypothesized root causes of drug product recalls based on publicly available data and a retroactive analysis of drug products recalled by the United States Food and Drug Administration (USFDA) from 2012 to 2018. We focused on two categories of drug products that pose unique regulatory challenges and an increased risk of shortage that could hinder the adequate supply of quality medicine to the patient. Knowing the significant risk factors from previous drug product recalls can help inform QbD and avoid future recalls. Quality recall reasons were studied individually to find risk factors associated with each recall category. Logistical regression statistical tests were done in R using a significance level of 0.05 to find correlations between a recalled product and its manufacturing information such as excipients and manufacturing steps. The results showed significant positive and negative correlations, such as products containing magnesium stearate are more likely to be recalled for impurities and degradation. This information could be used in the future to inform the design and manufacturing of drug products, ensuring consumers receive high-quality products with a low risk of recall.


Assuntos
Epilepsia , Preparações Farmacêuticas , Recall de Medicamento , Humanos , Fatores de Risco , Estados Unidos , United States Food and Drug Administration
6.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 4): 433-445, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33936772

RESUMO

Bedaquiline is one of two important new drugs for the treatment of drug-resistant tuberculosis (TB). It is marketed in the US as its fumarate salt, but only a few salts of bedaquiline have been structurally described so far. We present here five crystal structures of bedaquilinium maleate {systematic name: [4-(6-bromo-2-meth-oxy-quinolin-3-yl)-3-hy-droxy-3-(naphthalen-1-yl)-4-phenyl-but-yl]di-methyl-aza-nium 3-carb-oxy-prop-2-enoate}, C32H32BrN2O2 +·C4H3O4 -, namely, a hemihydrate, a tetra-hydro-furan (THF) solvate, a mixed acetone/hexane solvate, an ethyl acetate solvate, and a solvate-free structure obtained from the acetone/hexane solvate by in situ single-crystal-to-single-crystal desolvation. All salts exhibit a 1:1 cation-to-anion ratio, with the anion present as monoanionic hydro-maleate and a singly protonated bedaquilinium cation. The maleate exhibits the strong intra-molecular hydrogen bond typical for cis-di-carb-oxy-lic acid anions. The conformations of the cations and packing inter-actions in the maleate salts are compared to those of free base bedaquiline and other bedaquilinium salts.

7.
Int J Pharm ; 602: 120611, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872710

RESUMO

The levitation of samples in an acoustic field has been of interest in the preparation and study of amorphous solid dispersions (ASD). Here, niclosamide-polymer solutions were levitated in a multi-emitter single-axis acoustic levitator and analyzed for 10 min at a High-resolution synchrotron X-ray powder diffraction beamline. This assembly enabled high-quality and fast time-resolved measurements with microliter sample size and measurement of solvent evaporation and recrystallization of niclosamide (NCL). Polymers HPMCP-55S, HPMCP-50, HPMCP-55, Klucel®, and poloxamers were not able to form amorphous dispersions with NCL. Plasdone® and Soluplus® demonstrated excellent properties to form NCL amorphous dispersions, with the last showing superior solubility enhancement. Furthermore, this fast levitation polymer screening showed good agreement with results obtained by conventional solvent evaporation screening evaluated for five days in a stability study, carried out at 40 °C/75% RH. The study showed that acoustic levitation and high-resolution synchrotron combination opens up a new horizon with great potential for accelerating ASD formulation screening and analysis.


Assuntos
Niclosamida , Síncrotrons , Acústica , Química Farmacêutica , Pós , Solubilidade , Difração de Raios X , Raios X
8.
J Pharm Sci ; 110(7): 2789-2799, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33737019

RESUMO

Poly (ethylene oxide) (PEO) has been widely used in abuse-deterrent formulations (ADFs) to increase tablet hardness. Previous studies have shown that formulation variables such as processing conditions and particle size of PEO can affect ADF performance in drug extraction efficiency. This work aims to understand the effect of PEO grades and sources on the compaction characteristics of model ADFs. PEOs from Dow Chemical and Sumitomo Chemical with different molecular weights were examined using a Styl'One compaction simulator at slow, medium, and fast tableting speeds. Particle-size distribution, thermal behavior, tabletability, compressibility using the Heckel model, compactibility, and elastic recovery were determined and compared between the neat PEOs and model ADFs. Multivariate linear regression was performed to understand the effect of compression conditions and PEO grades and sources. Our results show that neat PEOs with high molecular weight exhibit high tabletability. The source of neat PEOs contributes to the difference in tabletability, out-die compressibility, compactibility, and elastic recovery. However, the influence of the PEO source on tabletability and compactibility decreases after adding the model drug. In our model ADFs, tablets using PEOs with high molecular weight have high crushing strength, and tablets using PEOs from Dow Chemical display low elastic recovery.


Assuntos
Formulações de Dissuasão de Abuso , Óxido de Etileno , Composição de Medicamentos , Tamanho da Partícula , Polietilenoglicóis , Comprimidos , Resistência à Tração
9.
Int J Pharm ; 600: 120500, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753163

RESUMO

We use X-ray pair distribution function (PDF) analysis applied to high-energy synchrotron X-ray powder diffraction data to evaluate the amorphous solid dispersions interactions and their aging stability. The obtained systems are based on hydroxypropyl methylcellulose (hypromellose) derivatives and flubendazole (FBZ) drug dispersions prepared using a spray-dryer technique. We carry out stability studies under aging parameters (40 °C/75% relative humidity) to tune the systems' recrystallization. The results reveal that ion-base interactions between the drug-polymer matrix are responsible for reducing clustering processes yielding slower recrystallization and different ordering in the hypromellose phthalate (HPMCP/FBZ) and hypromellose acetate succinate (HPMC-AS/FBZ) systems and complete drug clustering in hypromellose (HPMC-E3/FBZ). The structural ordering was accessed using differential X-ray PDFs that revealed the region between 3.5 Å and 5.0 Å could be related to FBZ intermolecular interactions and is more ordered for the least stable system (HPMC-E3/FBZ) and less ordered for the most stable system (HPMCP/FBZ). These results show that the ion-base interactions between drug and matrix occur at these intermolecular distances.


Assuntos
Mebendazol , Metilcelulose , Estabilidade de Medicamentos , Derivados da Hipromelose , Mebendazol/análogos & derivados , Polímeros , Solubilidade
10.
Acta Crystallogr C Struct Chem ; 76(Pt 11): 1010-1023, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148877

RESUMO

Bedaquiline [systematic name: 1-(6-bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)-2-(naphthalen-1-yl)-1-phenylbutan-2-ol, C32H31BrN2O2] is one of two important new drugs for the treatment of drug-resistant tuberculosis (TB). It is marketed in the US as its fumarate salt {systematic name: [4-(6-bromo-2-methoxyquinolin-3-yl)-3-hydroxy-3-(naphthalen-1-yl)-4-phenylbutyl]dimethylazanium 3-carboxyprop-2-enoate, C32H32BrN2O2+·C4H3O4-}, and about a dozen other salts of bedaquiline have been described in patent literature, but none have so far been structurally described. In a first communication, we present the crystal structure of bedaquilinium fumarate and of two new benzoate salts, as well as that of a degradation product of the reaction of bedaquilinium fumarate with sodium ethoxide, 3-benzyl-6-bromo-2-methoxyquinoline, C17H14BrNO. The fumarate and benzoate salts both feature cations monoprotonated at the dimethylamino group. The much less basic quinoline N atom remains unprotonated. Both salts feature a 1:1 cation-to-anion ratio, with the fumarate being present as monoanionic hydrofumarate. The conformations of the cations are compared to that of free base bedaquiline and with each other. The flexible backbone of the bedaquiline structure leads to a landscape of conformations with little commonalities between the bedaquiline entities in the various structures. The conformations are distinctively different for the two independent molecules of the free base, the two independent molecules of the hydrofumarate salt, and the one unique cation of the benzoate salt. Packing of the salts is dominated by hydrogen bonding. Hydrogen-bonding motifs, as well as the larger hydrogen-bonded entities within the salts, are quite similar for the salts, despite the vastly differing conformations of the cations, and both the hydrofumarate and the benzoate structure feature chains of hydrogen-bonded anions that are surrounded by and hydrogen bonded to the larger bedaquilinium cations, leading to infinite broad ribbons of anions, cations, and (for the benzoate salt) water molecules. The benzoate salt was isolated in two forms: as a 1.17-hydrate (C32H32BrN2O2+·C7H5O2-·1.166H2O), obtained from acetone or propanol solution, with one fully occupied water molecule tightly integrated into the hydrogen-bonding network of anions and cations, and one partially occupied water molecule [refined occupancy 16.6 (7)%], only loosely hydrogen bonded to the quinoline N atom. The second form is an acetonitrile solvate (C32H32BrN2O2+·C7H5O2-·0.742CH3CN·H2O), in which the partially occupied water molecule is replaced by a 74.2 (7)%-occupied acetonitrile molecule. The partial occupancy induces disorder for the benzoate phenyl ring. The acetonitrile solvate is unstable in atmosphere and converts into a form not distinguishable by powder XRD from the 1.17-hydrate.

11.
AAPS PharmSciTech ; 21(5): 198, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32676955

RESUMO

High numbers of drug recalls persist despite the tremendous time and effort invested by pharmaceutical organizations and regulatory bodies such as the Food and Drug Administration (FDA) to ensure the quality of safe and effective medicines for the patient. It is imperative to better understand the underlying risk factors of drug formulation-based recalls to best protect the patient from poor quality drugs. Increased knowledge of underlying factors of formulation risk can also help inform the future design and development of drugs. In this study, we used a text mining technique with Python to parse the data and examine drug recalls from the aspect of administration route, dosage form, release mechanism, market type, pharmacologic class, and excipients. Observational analysis of the recalls revealed both high- and low-risk factors for the formulation-based recalls. Higher risk, or an increased probability of a formulation-based recall, was associated with factors such as extended release mechanism, capsule dosage form, oral route of administration, and an increased number of excipients, while lower risk of formulation-based recalls was associated with other factors including the new drug application market type, immediate release mechanism, and solution dosage form. In addition, the factors did not work independently, and we observed interactions among variables. For example, the release mechanism modified the effect of market type, administration route, and dosage form. This study will help inform the future design of quality drug products by pharmaceutical organizations and assist risk-based oversight by regulatory organizations, such as FDA, to ensure patient safety.


Assuntos
Composição de Medicamentos , Recall de Medicamento , Cápsulas , Excipientes , Humanos , Estados Unidos , United States Food and Drug Administration
12.
Phys Chem Chem Phys ; 22(23): 13160-13170, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32495810

RESUMO

Understanding the relationship between the structure and the physicochemical attributes of crystalline pharmaceuticals requires high-resolution molecular details. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy is an indispensable tool for analyzing molecular structures, but often experiences challenges of low spectral resolution and sensitivity, particularly in the characterization of unlabeled pharmaceutical materials. Besides, the relatively long spin-lattice relaxation times in pharmaceutical crystals result in time-consuming data collections. In this study, we utilize ultrafast magic angle spinning (UF-MAS) of the sample at 60 and 110 kHz to enable proton and fluorine spectroscopies for probing the structural details of crystalline posaconazole. Paramagnetic relaxation enhancement (PRE), obtained by doping Cu(ii) ions into the crystalline lattice and coating on particle surface, is implemented to shorten the spin-lattice relaxation time for speeding up the ssNMR acquisition. Our results demonstrate a remarkably improved 1H and 19F resolution and sensitivity, which enables multi-dimensional 1H-1H and heteronuclear 1H-19F correlations. In combination with density functional theory (DFT) calculations of chemical shifts, molecular details of posaconazole are established in terms of 1H and 19F networks for identifying "head-to-tail" and "head-to-head" intermolecular packings, with presumably critical contacts that stabilize the crystalline structure. The PRE and UF-MAS techniques enable the high-resolution structure characterization of fluorinated drug molecules in pharmaceutical formulations at natural abundance.


Assuntos
Triazóis/análise , Cobre/química , Teoria da Densidade Funcional , Flúor/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Prótons
13.
Mol Pharm ; 17(7): 2585-2598, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32401529

RESUMO

Despite the wide utilization of amorphous solid dispersions (ASDs) for formulating poorly water-soluble drugs, fundamental understanding of the structural basis behind their stability and dissolution behavior is limited. This is largely due to the lack of high-resolution structural tools for investigating multicomponent and amorphous systems in the solid state. In this study, we present what is likely the first publication quantifying the molecular interaction between the drug and polymer in ASDs at an angstrom level by utilizing 19F magic angle spinning (MAS) nuclear magnetic resonance (NMR) techniques. A variant of the 19F-13C rotational-echo and double-resonance (REDOR) technique was developed to quantify interatomic distances by implementing a supercycled symmetry-based recoupling schedule and synchronized simultaneous detection. We successfully deployed the technique to identify "head-to-head" and "head-to-tail" packing of crystalline posaconazole (POSA). To probe molecular interactions between POSA and hypromellose acetate succinate (HPMCAS) in the dispersion, as a major goal of this study, two-dimensional (2D) 1H-19F correlation experiments were performed. The approach facilitated observation of intermolecular hydrogen-to-fluorine contacts between the hydroxyl group of the polymer and the difluorophenyl group of the drug substance. Atomic distance measurement, utilizing the developed 19F-13C REDOR technique, revealed the close proximity of 13COH-19F at 4.3 Å. Numerical modeling analysis suggested a possible hydrogen bonding interaction between the polymer O-H group as an acceptor and POSA fluorine (O-H···F) or difluorophenyl ring (O-H···Ph) as a donor. These 19F MAS NMR techniques, including 2D 19F-1H heteronuclear correlation and 19F-13C atomic distance measurement, may shed light on the nature (i.e., type and strength) of drug-polymer interactions in ASDs and offer a new high-resolution analytical protocol for probing the microstructure of amorphous pharmaceutical materials.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metilcelulose/análogos & derivados , Polímeros/química , Triazóis/química , Ligação de Hidrogênio , Metilcelulose/química , Modelos Moleculares , Estrutura Molecular
14.
J Phys Chem B ; 124(25): 5271-5283, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32378905

RESUMO

Crystalline and amorphous materials usually possess distinct physicochemical properties due to major variations in long-range and local molecular packings. Enhanced fundamental knowledge of the molecular details of crystalline-to-amorphous interconversions is necessary to correlate the intermolecular structure to material properties and functions. While crystal structures can be readily obtained by X-ray crystallography, the microstructure of amorphous materials has rarely been explored due to a lack of high-resolution techniques capable of probing local molecular structures. Moreover, there is increasing interest in understanding the molecular nature of amorphous solids in pharmaceutical sciences due to the widespread utilization of amorphous active pharmaceutical ingredients (APIs) in pharmaceutical development for solubility and bioavailability enhancement. In this study, we explore multidimensional 13C and 19F magic angle spinning (MAS) NMR spectroscopy to study the molecular packing of amorphous posaconazole (POSA) in conjunction with the crystalline counterpart. Utilizing methods integrating homonuclear and heteronuclear 1H, 13C, and 19F correlation spectroscopy and atomic 19F-to-13C distance measurements, we identified the major differences in molecular packing between crystalline and amorphous POSA. The intermolecular "head-to-head" interaction along the molecule's major axis, as well as the "head-to-tail" molecular packing perpendicular to the major axis in POSA crystals, was recapitulated by MAS NMR. Furthermore, critical intermolecular distances in the crystal lattice were determined. Most importantly, the head-to-tail contact of two neighboring molecules was found to be preserved in amorphous POSA, suggesting localized molecular order, whereas crucial interactions for head-to-head packing are absent in the amorphous form resulting in long-range disorder. Our study, likely one of the first documented examples, provides molecular-level structural details to understand the molecular mechanism of crystalline-to-amorphous conversion of fluorine-containing drug substances occurring in drug processing and development and establish a high-resolution experimental protocol for investigating amorphous materials.


Assuntos
Flúor , Imageamento por Ressonância Magnética , Preparações Farmacêuticas , Espectroscopia de Ressonância Magnética , Estrutura Molecular
15.
AAPS PharmSciTech ; 21(3): 86, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31997096

RESUMO

The main goal of the presented work was to understand changes in the microstructure of tablets, as well as the properties of its main component viz. polyethylene oxide (PEO) as a function of sintering. Key polymer variables and sintering conditions were investigated, and sintering-induced increase in tablet tensile strength was evaluated. For the current study, binary-component placebo tablets comprised of varying ratios of PEO and anhydrous dibasic calcium phosphate (DCP) were prepared at two levels of tablet solid fraction. The prepared tablets were sintered in an oven at 80°C at different time points ranging from 10 to 900 min and were evaluated for pore size, tablet expansion (%), and PEO crystallinity. The results showed that for efficient sintering and a significant increase in the tablet tensile strength, a minimum of 50% w/w PEO was required. Moreover, all microstructural changes in tablets were found to occur within 60 min of sintering, with no significant changes occurring thereafter. Sintering also resulted in a decrease in PEO crystallinity, causing changes in polymer ductility. These changes in PEO ductility resulted in tablets with higher tensile strength. Formulation variables such as PEO level and PEO particle size distribution were found to be important influencers of the sintering process. Additionally, tablets with high initial solid fraction and sintering duration of 60 min were found to be optimal conditions for efficient sintering of PEO-based compacts. Finally, prolonged sintering times were not found to provide any additional benefits in terms of abuse-deterrent properties.


Assuntos
Formulações de Dissuasão de Abuso , Polietilenoglicóis/química , Comprimidos/química , Resistência à Tração
16.
AAPS PharmSciTech ; 20(5): 176, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31037517

RESUMO

Predictive formulation design and accelerated formulation design can lead to the discovery of useful formulations to support drug clinical studies and successful drug approval. Predictive formulation design can also lead to discovery of a path for commercialization, especially for poorly soluble drugs, when the target product profile is well defined and a "learning before doing" approach is implemented. One of the key components of predictive/accelerated formulation design is to understand and leverage the material properties of drug substance including solubility, BCS classification, polymorphs, salt formation, amorphous form, amorphous complex, and stability. In addition, utilizing synchrotron-based PDF (pair distribution function) analysis can provide important structural information for the formulation. This knowledge allows control of physical and chemical stability of the designed product. Finally, formulation design should link to process development following Quality by Design principles, and solid-state chemistry should play a critical role in many of the steps required to achieve Quality by Design, which can lead to successful product development.


Assuntos
Composição de Medicamentos , Síncrotrons , Química Farmacêutica , Estabilidade de Medicamentos , Previsões , Solubilidade
17.
AAPS PharmSciTech ; 20(2): 73, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631973

RESUMO

Traditionally, drug discovery and development research have been primarily focused on the mitigation of disease treatment for the general adult population, often overlooking the medical needs of pediatric patients. While remarkable progress toward the discovery of better medicines has been made, the pharmacological differences between children and adults are often neglected as part of the translation process. In fact, until recently, children have been considered therapeutic orphans due to the lack of significant drug discovery, formulation development, and dosage form design specifically tailored for pediatric patients. Perhaps the least understood is the significant physiological changes that occur during the maturation process from birth to adulthood. It requires careful considerations to achieve age-specific-desired therapeutic outcomes with minimal toxicity. This introduces considerable risk into the preclinical and clinical testing of new medicaments, which until recently, was avoided based on the conventional approach where a demonstration of safe and efficacious use in adults over several years potentially would minimize the chance of adverse juvenile responses. However, the lack of appropriate drug products for children has led to off-label use of adult medicines with potential life-threatening adverse reactions and health complications. Recent developments and future considerations regarding pediatric drug discovery and development using a patient-centric approach in the context of ontogenic biopharmaceutical considerations are discussed below.


Assuntos
Composição de Medicamentos , Descoberta de Drogas , Pediatria , Adolescente , Adulto , Criança , Pré-Escolar , Avaliação Pré-Clínica de Medicamentos , Humanos , Lactente , Recém-Nascido
18.
AAPS PharmSciTech ; 19(5): 2407-2417, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29869313

RESUMO

Understanding physicochemical stability of darunavir ethanolate is expected to be of critical importance for the development and manufacturing of high-quality darunavir-related pharmaceutical products. However, there are no enabling monographs for darunavir to illustrate its solid-state chemistry, impurity profile, and assay methods. In addition, the US Pharmacopeia reference standard of darunavir is still not commercially available. It has been also challenging to find reliable vendors to obtain highly purified darunavir ethanolate crystals to conduct the physicochemical stability testing. In the present research, we developed a straightforward and cost-effective approach to extract and purify darunavir ethanolate from PREZISTA® tablets using reverse-engineering and crystallization. Using these highly purified crystals, we thoroughly evaluated the potential risks of degradation and form conversions of darunavir ethanolate at stressed conditions to define the manufacturing and packaging specifications for darunavir-related products. Amorphization was observed under thermal storage caused by desolvation of darunavir ethanolate. The ethanolate-to-hydrate conversion of darunavir was observed at high relative humidity conditions. Moreover, acid/base-induced degradations of darunavir have been investigated herein to determine the possible drug-excipient compatibility issues in formulations. Furthermore, it is of particular interests to allow the production of high-quality darunavir-ritonavir fixed dose combinations for marketing in Africa. Thus, a validated HPLC method was developed according to ICH guideline to simultaneously quantify assays of darunavir and ritonavir in a single injection. In summary, the findings of this study provide important information for pharmaceutical scientists to design and develop reliable formulations and processings for darunavir-related products with improved stability.


Assuntos
Darunavir/análise , Darunavir/química , Inibidores da Protease de HIV/análise , Inibidores da Protease de HIV/química , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Excipientes/análise , Excipientes/química , Ritonavir/análise , Ritonavir/química , Comprimidos , Difração de Raios X
19.
J Pharm Sci ; 107(1): 192-202, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28648689

RESUMO

Thermodynamic and kinetic aspects of crystallization of 12 structurally similar organic compounds were investigated from the supercooled liquid state by calorimetric and rheologic measurements. Based on their crystallization behaviors, these compounds were divided into 3 categories: stable glass formers, poor glass formers, and good glass formers with poor stability on reheating. Correlation was sought between thermodynamic quantities and glass formation based on nucleation and crystal growth theories. Larger values of enthalpy of fusion and melting point were found to correlate with poor glass-forming ability. Conversely, lower entropy of fusion was found to correlate with glass formation. Examination of kinetic aspects of glass formation revealed 2 important facets of good glass formers, that is, rapid increase in viscosity on supercooling and high melting point viscosity compared with non-glass formers. A broader relationship was sought between entropy of fusion and glass formation by including several glass formers from literature. Our analysis indicated that good glass formers tend to have an entropy of fusion closer to 0.3 J cm-3 K-1. The structural similarity of the compounds in this study provides insights regarding the nature of intermolecular interactions responsible for the observed effect on entropy of fusion, viscosity, and crystallization kinetics.


Assuntos
Vidro/química , Compostos Orgânicos/química , Cristalização/métodos , Entropia , Cinética , Reologia/métodos , Termodinâmica , Viscosidade
20.
Mol Pharm ; 14(6): 2126-2137, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28485947

RESUMO

Despite numerous challenges in their theoretical description and practical implementation, amorphous drugs are of growing importance to the pharmaceutical industry. One such challenge is to gain molecular level understanding of the propensity of a molecule to form and remain as a glassy solid. In this study, a series of structurally similar diarylamine compounds was examined to elucidate the role of supramolecular aggregation on crystallization kinetics from supercooled liquid state. The structural similarity of the compounds makes it easier to isolate the molecular features that affect crystallization kinetics and glass forming ability of these compounds. To examine the role of hydrogen-bonded aggregation and motifs on crystallization kinetics, a combination of thermal and spectroscopic techniques was employed. Using variable temperature FTIR, Raman, and solid-state NMR spectroscopies, the presence of hydrogen bonding in the melt and glassy state was examined and correlated with observed phase transition behaviors. Spectroscopic results revealed that the formation of hydrogen-bonded aggregates involving carboxylic acid and pyridine nitrogen (acid-pyridine aggregates) between neighboring molecules in the melt state impedes crystallization, while the presence of carboxylic acid dimers (acid-acid dimers) in the melt favors crystallization. This study suggests that glass formation of small molecules is influenced by the type of intermolecular interactions present in the melt state and the kinetics associated with the molecules to assemble into a crystalline lattice. For the compounds that form acid-pyridine aggregates, the formation of energy degenerate chains, produced due to conformational flexibility of the molecules, presents a kinetic barrier to crystallization. The poor crystallization tendency of these aggregates stems from the highly directional hydrogen-bonding interactions needed to form the acid-pyridine chains. Conversely, for the compounds that form acid-acid dimers, the nondirectional van der Waals forces needed to construct a nucleus promote rapid assembly and crystallization.


Assuntos
Compostos Orgânicos/química , Ácidos Carboxílicos/química , Cristalização , Ligação de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...